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THE IN-PLANE VIBRATIONS OF A FLAT SPINNING DISK

By James G. Simmonds
SUMMARY

An analysis of the influence of spinning on the natural frequencies
of vibration of a thin elastic disk is first made and it 1s shown that
this influence is negligible. Next, the natural frequencies for a sta-
tionary disk corresponding to the two extreme cases of clamping to a rigid
hub and no clamping whatsoever are calculated and presented 1n graphical
and tabular form. Approximate expressions for the two natural frequen-
cies of a clamped disk which approach zero as the ratio of hub diameter
to disk diameter approaches zero are given. Finally, there is presented
an orthogonality relation between any two natural modes of vibration.

INTRODUCTION

The first writer to consider the in-plane vibrations of a spinning
disk was Grammel in 1935, who treated the special but important case of
rotationally symmetric torsional and radial vibrations. (See footnote,

p. 37 of ref. 1.) On the basis of his analysis, Grammel reached the con-
clusion that, within the accuracy of the basic elastlc equations, the
effect of rotation on the natural frequencies of vibration was negligible.
This conclusion was later (1939) adopted a priorl by Biezeno and Grammel
in an analysis of the more general case of torsional and radial vibra-
tions with diametral nodes. (See ref. 1, pp. 59-64.)

In 1952, Yamada (ref. 2) attempted to improve Grammel's original
analysis of the rotationally symmetric vibrations of & splnning disk by
including in the equations of motion certaln inertia forces which, it
appeared to him, Grammel had neglected from the start. Yamada found
that the additional terms he included could have appreciable influence
on the lowest natural frequency of the purely torsional oscillation mode
if the disk were clamped to a rigid hub of sufficiently small diameter
and concluded that the lowest torsional frequency approaches zero as the
velocity of rotation approaches the lowest natural frequency of the disk
at rest - an erroneous conclusion contradicting that of Grammel.

In an earlier version of the present report, the author attempted
to extend Yamada's analysis to the more general case of vibrations with



nodal diameters and included the same inertia forces as had Yamada.
Thus, among other results, Yamada's erroneous conclusion concerning the
vanishing of the lowest natural torsional frequency was reasserted.

That this conclusion is erroneous was first brought to the author’'s
attention by Messrs. D. G. Seymour and B. Wood of Bristol Siddeley
Engines Ltd. They based their arguments on physical grounds and did
not discuss the source of the discrepancy between Yamada's and the
author's results and those of Grammel.

The purpose of this report is to resolve this discrepancy and to
tabulate the upper and lower bounds on the natural frequencies of vibra-
tion of a thin elastic disk attached to a central hub. Also presented
are explicit expressions for the dynamic stresses and displacement,
approximate expressions for the two lowest natural frequencies for the
case of clamping to a rigid hub, and an orthogonality relation. Some of
the frequencles tabulated herein may be found in a paper by Singh and
Nandeeswaraiya (ref. 3).

The work presented in this report has been motivated primarily by
the need for a better understanding of some of the structural problems
associated with the contemplated use of large rotating disks of thin
aluminized plastic for optical and radar reflectors and solar sails in
space.

SYMBOIS
a hub radius of disk (fig. 1)
ajk matrix element
By,Bo arbitrary constants associated with ¢
B}’Bh arbitrary constants assoclated with
b outer radius of disk (fig. 1)
E Young's modulus
Eaﬁ covariant components of strain tensor
e dilatational strain invariant, Eg

€ps g,k un%t vec§§rs in r, 6, and 2z directions, respectively
fig.
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U,V

U%,Ug,
X,¥,%2
XosY0s %20

Ym

E

shear modulus, ————
2(1 - )

Bessel function of the first kind, order m
number of nodal diameters

radial coordinate

displacement vector, function of r, 6, and sometimes ¢

time

displacements in r and 6 directions, respectively, func-
tions of r, 6, and sometimes t

contravariant and covariant components, respectively, of s
rotating set of axes (fig. 1)
inertial set of axes (fig. 1)
Bessel function of the second kind, order m
two-dimensional del operator
two-dimensional Laplacian operator
order of masgnitude of dynamic strains in disk
order of magnitude of static strains in disk

angular coordinate (fig. 1)

Poisson's ratio

mass per unit volume of disk material

radial stress (fig. 1)



T circumferential stress (fig. 1)

T shearing stress (fig. 1)

TaB contravariant components of plane stress tensor

i) vibratory dilatational displacement potential, function of r,
8, and t

¢ vibratory dilatational displacement potential, function of r
only

¥ vibratory distortional displacement potential, function of r,
8, and t

¥ vibratory distortional displacement potential, function of r
only

Q frequency of rotation of disk

w natural frequency of vibration

U)J_:@b(l)
p
(1)2=\/%b0.)

Superscript:
o static quantity

Dots over symbols indicate differentiation with respect to time.
Primes indicate differentiation with respect to r.

EQUATIONS OF MOTION FOR A THIN SPINNING ELASTIC DISK

In this section the equations of motion for a thin spinning elastic
disk are presented and 1t 1s shown how these equatlons reduce to those
considered by Biezeno and Grammel in reference 1. Figure 1 indicates
the coordinate system and stress notation used In this report.

In a nonvibrating spinning disk, the centrifugal loading induces
a static stress field and the disk, i1f not perfectly rigid, undergoes



s static deformation. If the disk material is elastic in this statically
loaded state, the disk 1s capable of executing sinusoidal oscillations

of infinitesimal amplitude about its static equilibrium configuration.

By replacing all accelerations by inertial forces in accordance with
d'Alembert 's principle, the dynamic equations of equilibrium are reduced
to the static equations of a body subject to a known initial stress. Ir
these equations are written with respect to a set of coordinates in the
undeformed body, the classical equations of the infinitesimal theory must
be supplemented by terms of the form

(Initial stresses) X (Angles of rotation of element fivers)

Yamada's erroneous conclusion results from neglecting such initial stress
terms in the equations of motion.

For a thin elastic disk spinning at a constant rotational frequency
Q these equations, referred to a set of polar coordinates T and ©
in the undeformed disk, may be shown to take the form

d(I‘O’ro) 0.2
T - er + pr 0~ =0 (l)
B(rcr)
ot _ 3 (.U o\, |lfLu_Vi,o
or T %7 Br(r or °T ) 9 IKI‘ o8 r>ce]
- (g + % %g)Geo - pr(ﬁ - XV - Q2U) =0 (2)

+ (% %g - %)oeo - pr(v + 20U - QEV) =0 (3)

To obtain a determinant set of equatlons, equations (1) to (3) must be
supplemented by stress-displacement relations and boundary conditions.
These are supplied in later sections.

A quantitative argument may now be used to simplify these equations
considerably. From equation (1) it can be seen that the initial stresses,



which depend only on r, are of order pb2Q2, where b 1s the outer
prQ2

radius of the disk. Therefore let ° = denote the order of mag-

nitude of the static strains in the disk and let € denote the order of
magnitude of the dynamic strains in the disk. It then follows that the
dynamic displacements U and V can be expressed as the sum of a rigid-
body displacement plus a distortional term of order e. That is,

U(r,0,t) = A(t)cos[o - a(t)] + ebU*(r,6,t) (4)

V(r,0,t) = -A(t)sinfo - a(t)] + B(t)r + ebv*(r,0,t) (5)

where A 1s the amplitude of the rigid-body displacement, B 1s the
amplitude of the rigid-body rotation, o is the angle between the x4

inertial axis and the x-axis in the undeformed body, and U*,V* = 0(1).

The amplitude B appears only in the case of no diametral nodes and A

appears only in the case of one diametral node. Thus all terms in equa-
tions (2) and (3) of the form

(Initial stress) X (Rotation angle)

can be neglected as being of order ¢© compared with unity except those
of the form

(Initial stress) X (Rigld-body rotation)

Under these conditions, equations (2) and (3) reduce to

B(I‘U ) ) . .
.._a;_r_+.a§-ce-pr(U—2QV-92U)=0 (6)

d . .
o(rr) , ﬂ + 1 @& - o] - or{¥ + 200 - 0%) = 0 (7)

By using equation (1), equation (7) may be written as

3 rr) aoé . . 5
é;"T +$—-+T—prE/'+EQU-Q(V—Brﬂ=O (8)

In this report only the two extreme cases of clamping to a rigid
hub and no clamping whatsoever (equivalent to a disk with a concentric
hole) are considered. For these two cases certain restrictions must be



placed on A and a. For clamping to a rigid hub, the condition that
the displacements be zero at the hub means that A = 0(e). For the case
of no clamping, any rigid-body motion of the disk must consist of move-
ment along a straight line in inertial space at constant velocity in
order to conserve linear momentum. Hence, in this case, a = -Ot.

Consider now equations (6) and (8) for the case of vibrations with
(a) no diametral nodes, (b) one diametral node, and (c) two or more
diametral nodes:

(a) For no diametral nodes, equations (6) and (8) read

a(g"r) - gy - pr(U - 20¥) + epTbQU” = 0 (9)
r

aérT) + 1 - pr(V + 200) + eprba&v* = 0 (10)
r

But eprb92 = 0(ee®) and 0y,0.,T = 0(e). Hence the last term in equa-

tion (9) and equation (10) is of order €° compared with unity, which
is negligible. Therefore, these equations may be written in the simpli-
fied form

o(roy .

(_ar_)_ - oy - pr(U - 207) =0 (11)

oler) - pr(V + 200) =0 (12)
or

(b) For one diametral node, the B term does not appear, and equa-
tions (6) and (8) read

_a_(;l).+.g_g_ce—pr(ﬁ-2m7-ﬂ2U)=0 (13)
T

) .
M+£_9+T-pr(v+2nﬁ-92v)=o (14)

or

If the disk is clamped to a rigid hub, then, for these one-diametral-
node cases, U,V = O(be). Thus, since terms of order €? are being



neglected compared with unity, the last terms in equations (13) and (1k)
may each be omitted. For the case of no clamping, in equation (13),

G - 207 - 02U = A(-02 + 202 - 02)cos(6 + at) + en(T* - cav* - 02u*)
(15)

and in equation (14),

¥+ 200 - e2v = a(02 - 202 + 02)sin(e + at) + eb(V¥ + 2a0* - Qev‘*)

(16)
Thus, in both cases the equations of motion are simplified to
———+ & _ g - pr(U-20V) =0 1
e R ) (17)
Rl .. .
olxr) , 0, . or(V + 200) = 0 (18)
or 38

(¢) For two or more diametral nodes, U,V = O(be) and equa-
tions (2) and (3) are readily seen to reduce to equations (17) and (18).
But now by appealing to Blezeno and Grammel's arguments (pp. 41 and 59
of ref. 2), the Coriolis terms in equations (17) and (18) may also be
neglected. Thus the equations of motion reduce to those for a sta-
tionary disk:

éiggﬁl + %g -0 - prlU = 0 (19)
r
3 .
ééle + Sgg + T - prVv =0 (20)
r

These are the equations set down by Biezeno and Grammel. However,
their derivation of these equations is somewhat misleading, especially
in view of the statement on page 60 of reference 1 that any initial
stresses due to rotation may be neglected. Certainly this statement

is not true if the equations of motion are referred to an undeformed
set of coordinates. Yet nowhere in the derivation of reference 1 is it
implied that a deformed coordinate system has been used.



VECTOR FORM OF THE EQUATIONS OF MOTION

The dynamic stresses in the disk are assumed to be given in terms
of U and V by the following linear stress-displacement relations
of plane stress theory.

T CCLAN A =L
T G(Br r ¥ r 6) (1)
I (oL A ;ﬂ)
o F[ar+p.(r+rae] (22)
Sl LU, W
0 = F(r 5 tTtH Br) (23)
where
E
F=—— (24)
1l -~ pe
E
= — 2
TR (25)

E 1is Young's modulus, and p 1s Poisson's ratio. If the displacement
of a point of the disk during the time-dependent motion is expressed in
the vector form

EKr,G,t) = U(r:e)t)ér(a) + V(r:e;t)ée(e) (26)

then with the ald of equations (21) to (23) and equation (26), equa-
tions (19) and (20) of the preceding section may be cast into the vector
form

F(V - 8) -GV X (Vx8S) =pS (27)
BOUNDARY CONDITIONS

The outer edge of the disk is to be stress-free; hence, at r = b,
op =T = 0. Assume for a moment that at the inner boundary the disk is
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clamped to an elastic hub and the disk is oscillating in one of its
natural modes. Now if the flexibility of the hub could be continuously
decreased - that is, be made more nearly rigid - it would be found that
the frequency of the disk in this mode would continuously increase (the
mode shape, of course, would continucusly change as well) in accordance
with Rayleigh's principle, since the constraints on the displacements
were continually increasing. Thus, any frequencies encountered in prac-
tice will be bounded below and above, respectively, by the frequencies
corresponding to the two extreme cases of a perfectly flexible hub (no
clamping) and a perfectly rigid hub (rigid clamping). This report con-
siders these two extreme cases only, together with the limiting case of
a solid disk. It should be noted that two of the modes for the case of
no clamping represent a rigid-body translation and a rigld-body rota-
tion, and hence have zero natural frequency.

SOLUTION OF THE EQUATIONS OF MOTION

The solution of equation (27) is most easily obtained if S 1is
written as follows:

S(r,6,t) = vo(r,8,t) +V x ki(r,0,t) (28)

where V& represents the dilatational (or irrotational) component of
S and V X k§ represents the distortional (or equivoluminal) com-
ponent of S. Substituting equation (28) into equation (27) gives

V(20 - 08) + ¥ x k(cv2y - o¥) = 0 (29)
where V© 1s the two-dimensional Laplacian operator in polar coordinates:
13/ 3 1 9°
v2=__(r_)+__.. (30)

r or\ or r2 3p2

For the present problem it will be sufficient to consider the solu-
tion of the equations

oo - pd (31)

GV%-D;I;

which clearly provide solutions which satisfy equation (29). To elim-
inate the angle and time dependence from these equations, set

1l
(@]

0 (32)
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o(r,0,t) = @(r)cos(ms + wt) (33)

¥(r,0,t) = y(r)sin(m + wt) (34)

Where m 1is an integer which determines the number of nodal diameters
for a given motion. Equations (31) and (32) then read

' 2
¢"+¢?-m2%+°‘°—FQ=O (35)
r
' 2
wu+llfr__m2;‘l’§+pr¢=o (36)

where primes denote differentiation with respect to r.

Expressions in terms of ¢ and V¥ are derived for the displace-
ment (from egs. (26) and (28)) and for the stresses (from eqs. (21)

to (23)):

U = (¢' +m %)cos(me + wt) (37)

V = -(‘J" +m g>sin(m8 + wt) (38)

T = _G(q," - _‘}’}’_ + me lg + 2m 2;; - 2m —‘i—)sin(m@ + wt) (39)
r r

[ t ' 1
Gr=F¢"+m%—-mf§+u(¢—-me;%—m-qir—+m—%)]cos(me+cnt) (40)

r r

Ue=FF%—'m2-I%-m%'l+m-}§+p(¢"+mﬂ;—‘-m-1-"%):|cos(me+a)t) (%1)

In view of equations (35) and (36), the expressions for the stresses
may be written in the alternate form

T = EXD%II'*%E(‘V' _m2¥_m¢+mg)]sin(nﬂ + wt) (42)
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Gr=—l;w2¢+%q(¢' - ng-m\y' +mllr£)Jcos(me + wt) (43)
% = [.um@gs " %G.(gsv -2 w4 ‘i;’)] cos(md + wt) (44)

Equations (35) and (36) are Bessel equations having the solutions

$

wolfie) 2o

(45)

¥ o= B5Jm(\/g wr) + BhYm(\['g a)r) (46)

Inserting these solutions into equations (37) to (k1) and defining, for
simplicity, the nondimensional radial distance

£ =% (47)
ylelds
My ]
v .__g 2 ay, (8)B| cos(mo + ut) (48)
k=1 -
L -
%:-% Z azk(g)Bk sin(me + wt) (49)
(k=1 ]
-—)-L -
% - ;15 8 (8)By| sin(md + wt) (50)
(k=1 _
Pl‘, -
i;_f'. = _lE Z auk(g)Bk cos(mb + wt) (51)
£% k=1 |
Ge _——l__
- = 5 i a5k(g)3k cos(mb + wt) (52)
k=1




The nondimensional frequenciles

p p
cn1=J;bw w2=\/-;;bw
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(53)

are used in defining the following symbols which appear in equations (48)

to (52):
83(8) = wim(wnt) - (@18)Tmea(*18)

ayo(8) = mIm(wlg) - (wlg)Ym+l(wl§)
(

13(8) = Wa(ogt)
ay(8) = mlp(wyt)
ag) () = miy(w8)
app(E) = m¥p(w8)
ap3(t) = nIp(w,t )

)

agh(g) = mYm(w2§ - (wgl_‘,
a5l(g) = Q.MKm - 1)Jp a)lg) -

ass(s) = [outn - 1) - (o) ] om(wzt) + 2(ect)Tpua(o2t)

agy(8) = [onlm - 1) - ()| n(ozt) + 2(0gt) Tmer(28)

a(8) = [nln - DA - b - (18)7)Tm(018) + (1 - W) (@18)Tpea (028)
ayalt) = falm - DD - ) - (018) T(wrt) + (1 - w)(028) Tpea (2t
ay5(8) = m(1 - ) [(m - 1)m(gt) - (088 )T (@)

e, (8) = m(1 - u) [(m - 1)¥p(wgt) - ((@g8) Y wgg]

l'\)

a5y (8) = I;n(m = 1)1 - p) + puwt) :]Jm w8) + (1 - 1) (@18) Imea (w16)
rafort) + (1 - W(@18)Tma(ont)
a3(8) = m(1 - w) [(m - 1)In(wzt) - (928) e (02t)
as) () = m(1 - ) [(m - 1)¥p(wpt) - (w2t) Yy (mgg)]

I\)

aso8) = [alm - ) - ) + Went)

.\

> (54)
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The arbitrary constants appearing in equations (48) to (52) are
determined by the boundary conditlons specified In the preceding section
and lead to the following matrix equations:

For no clamping,
as(a/5)  agplafo)  ag(a/e)  ay(e/o)| [B)

ahl(a/b) aue(a/b) au3(a/b) auu(a/b) By
{ P=0 (55

a}l(l) a32(l) a§3(l) a}h(l) B3
_?hl(l) ahE(l) ah3(l) ahh(l) _ \Ph)

and for clamping tc a rigid hub,

~ A Y
all(a/b) aj 5 a/v) alB(a/b) alu(a/b) B,
8, a/b) a22(a/b) a23(a/b) agu(a/b) B,
{ "P =0 (56)
a}l(l) a52(l) a35(l) a}h(l) B5
a1 (1) a,p(1) 23(1) 2, (1) | | By ]

For the special case of an unconstralned solid disk, the condition
of regularity at the origin requires that equations (55) and (56) both
reduce to the form

a}l(l) a33(l) By

=0 (57)
a); (1) auB(l) B3

For m = 0 (radially symmetric modes), equations (55), (56),
and (57) can be simplified as follows:

For no clamping,
(wpa/b)Jdg(wpa/b) = 27 (wya/b) (wpa/P)Yo(wpa/b) - 2Y) (wpa/b) By

wglo(wp ) = 27y (wy) w ¥ o(wp) - 2¥(wp) B),
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and

(@a/b)Tg(wia/e) - (1 - p)d;(wa/v) (012/0) Yo wya/b) - (1 - u)Yl(wla/b) B,

=0 (59)
mlJo(cul) -1 - p)Jl((nl) wlYO(“’l) - {1 - u)Yl(a)l) Bo
For clamping to a rigid hub,
Jl(w2a/b) Yl(mza/b) B3
=0 (60)
ngo(me) - EJl(we) mEYO(w2) - 2Yl(m2) B),
and
Jl(wla/b) Yl(wla/b) B,
=0 (61)
leo(wl) - (1 - p.)Jl(wl) wlYo(wl) - (1 - u)Yl(wl) B,
For the unrestrained solid disk,
[2170(@1) - (& - way(e J]{Br} = © (62)
and
[©70(®2) - 2Jl(w2z]{B3} =0 (63)

The fact that equations (55) and (56) each break up into two inde-
pendent 2 X 2 matrix equations for m = O means that distortional and
dilatational waves for these modes are uncoupled.

In order for nontrivial solutions to exist for the constants By

appearing in these various matrix equations, the determinant of the
corresponding ajk matrices must be zero. The frequencies which lead

to the vanishing of these various determinants are the natural fre-
quencies of vibration.
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VIBRATIONAL MODES CONSIDERED

The natural frequencies of the following modes only have been
calculated:

(a) For m = 0, the lowest three distortional (U = 0) and dilata-
tional (V = 0) natural frequencies

(b) For m = 1, the lowest three natural frequencies for u = O,
0.25, and 0.5.

These correspond to the first three natural frequenciles associated with
each of equations (58) to (63) and to the first three associated with
each of equations (55) to (57) for m = 1. These frequencies, which
were computed with the aid of an IBM 7090 electronic data processing
system at the Langley Research Center, are listed in tables I to IV
and presented graphlically in figures 2 to 10. The radlally symmetric
torsional modes, as equations (58) and (60) show, are independent of
Poisson's ratio u. In some of the other modes the dependence on
Poisson's ratio may be virtually negligible (fig. 8) or it may be con-
siderable (fig. 10). The rather abrupt jump in the frequency curves
near a/b = 0 in figures 8, 9, and 10 for the rigid-clamping case is
due to the presence of logarithmic terms in the frequency determinant.

APPROXTMATE EXPRESSTIONS FOR THE LOWEST NATURAL FREQUENCY

INTHE m =0 AND m =1 MODES WHEN (a/b)e << 1

The m = 0 Mode

If terms of order (a/b)2 and w22 in equation (60) are retained,

the vanishing of the determinant of {?j#} yields the approximate

expression

p
wp =\/E b =~ 2Y2 a/v (a/b) << 1) (64)
for the lowest natural frequency of vibration.

In figure 11 the exact value of w, as determined by a numerical

computation of the roots of the determinant of the matrix of coeffi-
cients in equation (60) is compared with the approximate value of wo

as given by equation (64). As may be seen, equation (64) approximates
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the curve of wy agalnst a/b by a straight line tangent to the exact
curve at the origin.

Equation (64) may be given a simple physical interpretation with
the aid of figure 12, which 1s a sketch of the first m = 0 mode shape
for afb = 0.10.

It seems reasonable to surmise from this sketch that as a/b
approaches zero, the disk oscillates primarily as a rigld body, the
chief distortions occurring within an annular region whose width 1is
roughly of the same order of magnitude as the hub radius a.

The simplified model which this figure suggests is therefore an
oscillating rigid disk restrained in rotation by a torsional spring at
its center. The polar moment of inertia of such a disk of unit thick-

b
ness is p %— If the torsional stiffness of the spring is estimated

to be of the order of magnitude of G times the area of a circle of

radius 2a times the unit thickness (that is, hnagG), the frequency
of vibration of such an oscillating disk is then

Moment of inertia P p2

\{Torsiona.l stiffness o 2G a
w = =

which agrees with the approximate expression derived previously.

The m =1 Mode

For m = 1, the series expansions of the elements of the 4 X 4 matrix
{ajk} of equation (56) are as follows, with the first two terms explic-
itly written out:

wa/b 3(w,a/b 5
apy (0a/p) = 2 - (‘“16/ ..

alg(a)la/b) llg)la/b (mla,/ )1og(a)la/b) + .. J

woa /b (m2a /'bL3

alE(wza/b) =—- ..
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8y, (@8/0) =

wya/b ) Lmla/b)

- %E’eﬁ - (w2a/b)log(w2a/b) + .. j]

3
+

aQJ( a)la/b) =

2 16
L[ 2 (ua/t)iog{wyast) + . J

wpa/b ] 5(0)23/‘9)3 )

aps(wpa/b) = > 7

aeh(wea/b) = %[;; o (wea/b)log(a)za./b) + .. :]
i =L

ago(w1) = %(f_l- + ) + )

azz(wp) = - wTEB +“;Te5 +

axy(0p) = - %(m% + wy” log wp + )
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If the determinant of {?3%} is calculated by means of these series

expansions and the lowest order terms in (a/b)2 and wy, are retalned,

the following approximate expression is obtained for the lowest natural
frequency:

w, ~ 2y | 2 a
2 2\/(3-u)log(b/a) (afp << 2) (&)

Figure 13 is a graphical comparison between the exact value of ®p

and the approximate value given by equation (65). It will be observed
that although the rather sudden increase in o near a/b =0 1is

approximated well by equation (65), the approximation is valid for a
much smaller range of a/b than the corresponding approximation

(eq. (64)) for m = 0. Moreover, no simple physical interpretation for
equation (65) is apparent.

CONCLUDING REMARKS

The equations of motion governing the linear vibrations of a thin
spinning elastic disk have been reexamined, and Grammel's conclusion
that the rotation of the disk has no essential effect on 1ts natural
frequencies of vibration has been reaffirmed. Upper and lower limits
on the natural frequencies of vibration of an elastic disk clsmped to
an elastic hub have been calculated for the case of rotationally sym-
metric vibrations (m = 0) and vibrations with one diametral node (m = 1).
These upper and lower limits correspond, respectively, to the natural
frequencies of an elastic disk clamped to a rigid hub and one clamped
to a perfectly flexible hub (which is equivalent to no clamping). These
frequencies have been presented in both tabular and graphical form, and
approximate formulas have been developed for the natural frequencies of
disks clamped to rigid hubs of small diameter. Finally, an orthogonality
relation has been stated which permits, for example, an approximate
determination of the elastic response of the disk to any arbitrary motion
of the hub.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., July 6, 1962.
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APPENDIX
ORTHOGONALTTY

The condition of orthogonality of any two modes of vibration of an
elastic disk may be readily established with the aid of tensors. For a
full discussion of the tensor concept in elasticity, the reader is referred
to reference k.

For harmonic motion S = -w°S and the dynamic equations of equi-
1ibrium may be written in the tensor form

TG'B B + QDZUG =0 (a = 1, 2) (A1)

where TGB are the contravariant components of the plane stress tensor,

U are the contravariant components of the relative displacement vec-
tor S, and the vertical bar denotes covariant differentiation based upon
the metric tensor gaB of the coordinate system chosen to locate polnts

in the midplane of the disk.

Iet equation (A1) hold for some given vibrational mode and let a
tilde denote quantities associated with any other distinct vibrational
mode. Thus

~ap

G P BT =0 (& # ) (a2)
Multiplying equation (Al) by ﬁa and equation (A2) by U, and inte-

grating both the resulting expressions over A, the area of the disk,
results in

ﬂ( 8|5 w2u°ﬁa)u -0 (3)
ff( 8|y 4 d;%«ua)u -0 (ak)
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Next equation (A4) 1s subtracted from equation (A3) and the following
form of Green's theorem 1is used:

ﬂ'raﬁ Bﬁa, dA = Sﬁ TaBﬁamB ds + ¢ 'raBﬁunB ds - ﬂ Tanjd.lﬁ dA
r=a

r=b
(45)
where ds 1is an element of length taken along an edge of the disk and
where mB and nB are the covariant components of the unit vectors

normal to the circles r =a and r =b, respectively. The resulting
equation 1is

[ [0els - <+ olo? - o, on

+ Sﬁ(‘fa‘aﬁa - ’.}’%@)mﬁ ds + Sﬁ('raﬁﬁa - ’;G“BUa)nB ds =0 (A6)
r=a r=b
In view of the boundary conditions for the clamped and unrestrained

disks, the two line integrals appearing in equation (A6) vanish. Fur-
thermore, since the stress tensor 1s symmetric,

"T“’-”Ualﬁ - PG ' B = '-‘r"‘BEOLB - “B'ﬁaﬁ (AT)

where

Egp = %(UGIB + UBla) (A8)

is the infinitesimal elastic strain temsor. But the tensor form of the
stress-strain relation of plane stress theory 1s as follows:

P = 2G(E°"B b g“Be) (A9)
1-u
where
e = aBEo,B = Eg“' (A10)
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Hence

"i"‘"BEaB - ToBE_

~ TR -
g = EG{%GBEGB - EPE . + (Ce - eéﬂ

aB 1 - p

=0 (A11)

Thus, since ® # w, the condition of orthogonality is

[ v [[5-Fa

=0 (A12)
By use of equations (26), (48), and (49), equation (Al2) is further

reduced to
1 4 L _
S gL mustemy |}, wterh

=1 k=1
L L
. 3 BV o
'-_-l k=l
where now ajk and Ejk are to be computed for the same value of m.
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TABLE I

UPPER AND LOWER LIMITS ON THE THREE LOWEST RADTALLY SYMMETRIC

NATURAL TORSIONAL (U = O) FREQUENCIES

e v tor -
a/b No clamping Clamping to a rigid hub
First | Second Third First | Second Third
mode mode mode mode mode mode
0 0 | 5.1356 8.4172 0 | 5.1356 8.4172
10 | o g | s5.1423 | 8.h5Th | *.2866 | 5.3312 | 8.8521
.20 0 § 5.2218 8.8039 .5956 5.8247 9.7985
.30 0 ; 5.4702 9.6003 .9524 6.5763 | 11.1348
40 | 0 ,$ 5.9659 | 10.894k | 1.3920 | 7.6429 | 12.9679
.50 0 :gl 6.8138 | 12.8555 1.9732 9.1775 | 15.5629
.60 0 u 8.2272 | 15.9036 2.8098 | 11.5088 | 19.4743
70 | 0 9 |10.7299 | 21.0708 | 4.1650 | 15.4183 | 26.0083
.80 | © ; 15.8553 | 31.4903 | 6.8250 | 23.2597 | 39.0900
.90 0 § 31.4821 | 62.8650 | 14.7175 | 46.8124 | 78.3537
1.00 | © - w w ® w %
*For 2 <0.10 use the approximate formila dg b ~ 22 a/b.
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TABLE II

UPPER AND LOWER LIMITS ON THE THREE RADIALLY SYMMETRIC

NATURAL DILATATIONAL (V = Q) FREQUENCIES

ngm for -

a/b No clamping Clamping to rigid hub
First Second Third First Second Third
mode mode mode mode mode mode
p=2~0
0 2.6038 7.5398 12.0722 2.6038 7.5398 12.0722
.10 2.5505 7.2650 11.5954 2.65T7 T.8237 12.6921
.20 2.411% T7.0157 11.9262 2.8191 8.5316 14.0348
.30 2.2374 T.2654 13.1639 %.1007 9.6013 15.9268
40 2,0673 8.0032 15.1084 3.5377 11.1137 18.5204
.50 1.9158 9.2842 17.9696 L. 2038 13.2857 22.1907
.60 1,7848 11.3718 22.3461 5.2541 16.5831 27.7224
.TO 1.6721 14.9791 29.7037 7.0558 22,1111 36.9626
.80 1.5745 22.3131 I 4781 10.7176 33.1989 55.4627
.90 1.4893 L4 k726 88.8795 21.7915 66.5053 110.9895
1.00 1.h142 o0 ® o o o
u=0.25
0 3.2940 8.7851 13.9881 3.2940 8.7851 13.9881
.10 3.1888 8.2487 13.0928 3.3575 9.1150 14,7054
.20 2.9297 T7.8231 13.5394 3.5462 9.9350 16.2570
.30 2.6415 8.1521 15.0546 3.8726 11.1720 18.4423
40 2.3901 9.0667 17.3501 4.3770 12.9165 21.437h
.50 2.1844 10.5972 20.6852 5.1441 15.4280 25.6756
.60 2.0172 13.0466 25.7599 6.3530 19.2357 32.0632
.70 1.879% 17.2413 34,2711 8.4283 25.6189 L2, 7329
.80 1.7640 25.7325 51.3426 12.6503 38.4219 64.0949
.90 1.6659 51.3381 102.6220 25.4303 76.8807 128.2116
1.00 1.5811 o o ® o o
p = 0.50
0 L.3317 10.8549 17.1909 k.3317 10.8549 17.1909
.10 4.0913 9.6969 15.4642 h.4120 11.2613 18.0710
.20 3.5630 9.0875 16.2616 L. 6484 12.2689 19.9728
.30 3.0789 9.6358 18.2508 5.0540 13.7860 22.6500
140 2. 7142 10.8695 21.1295 5.6768 15.9277 26.3186
.50 2,442 12.8203 25.2544 6.6202 19.0009 31.5096
.60 2.2342 15.8726 31.4963 8.1032 23,6648 39.3%28
.70 2.0698 21.0480 41.9393 10.6458 31.4828 52.4005
.80 1.9364 21.4760 62.8617 15.8162 L7.1632 78.5636
.90 1.8257 62.8584 125.6770 31.4667 9k . 2654 157.0902
1.00 1.7321 o © oo 9 )
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TABLE ITI

UPPER AND LOWER LIMITS ON THE THREE LOWEST NATURAL FREQUENCIES

FOR ONE DIAMETRAL NODE (m = 1)

[% = 0(0.10)1.0%}

[s]
V; bw for
a/b No clamping Clamping to a rigid hub
First Second Third First Second Third
mode mode mode mode mode mode
p=0

0 0 2.4 ThY 5.00%2 0 2. 4ThY 5.00%2
.10 o X _ 2.4827 5.1385 1.2210 2.7481 5.9868
.20 0+ 2.5007 5.4711 1.5097 2.9309 6.4488
.30 0 o 2.5131 5.9185 1.791k 3.1904 7.0659
4o oand 2,5033% 6.4519 2.1138 3.5963 8.0001
.50 0 4 § 2.4623 T.21h4 2.5486 L.2ko4 9.4287
.60 ogd 2.3925 8.5150 23,2304 5.2797 11.6797
.70 0 EP 2.3031 10.9091 Gkl T7.0771 15.5286
.80 (O 2.2038 15.9662 6.9808 10.7357 23,3237
.90 0¢&3 2.101% 31.5313 14,7811 21,8035 46.84k07

1.00 03 *2.0000 ® w @ w

= 0.25

0 o] 2.6978 5.7746 0 2.6978 5.7T746
.10 0 2.7131 5.9426 1.2588 3.1696 6.5308
.20 0 2.7491 6.2819 1.5466 3.4711 6.5981
.30 o] 2.7839 6.5219 1.8292 3.8471 7.2909
4o 0 2.7918 6.7T73 2.1579 L.3667 8.1464
.50 0 2.7565 7-3729 2.6022 5.1357 9.5241
.60 0 2.6809 8.5920 3.2899 6.3442 11.7415
.70 o] 2.5792 10.9468 4.4986 8.4207 15.5673
.80 0 2.4659 15.9843 7.0262 12.6456 23.3459
.90 0 2.3499 31.5385 14,8068 25.4286 46.8504

1.00 0 *2,2361 ® © ® o

u = 0.50

0 0] 2.8572 6.5527 0 2.8572 6.5527
.10 o] 2.8797 6.7790 1.2994 3.5736 7.3933
.20 0 2.9357 7.0977 1.5840 L.0544 7.4850
.30 0 2.9987 T7.0153 1.8639 L.6393 7.8126
Lo 0 23,0339 T7.0426 2.1935 5.3946 8.5222
.50 0 3.0139 7.5099 2.6416 6.4327 9.7812
.60 0 2.9386 8.6612 3.3322 T7.9814 11.9087
.70 o] 2.8281 10.9816 4.5395 10.5695 15.6695
.8o 0 2.7027 16.0012 7.0592 15.772h 23,4021
.90 0 2.5745 31.5453 14.8257 31.5473 L46.8740

1.00 0 *2.4495 ® o o o

*For %—) 1, \lg wb — 2y1 + p, the value predicted for longltudinal vibrations of a thin

elastic ring.



TABLE IV

LOWEST NATURAL FREQUENCIES FOR ONE DIAMETRAL NODE (m = 1)

FOR CLAMPING TO A RIGID HUB WHEN a/b <1

[% = 0(0.01)0.10]

o/ % o for -
p=0 p=0.25 p = 0.50
o 0 0 0
.01 *.8161 *.8482 *.8842
.02 .8956 .9297 L9677
.03 9539 9891 1.0283
.04 1.0025 1.0386 1.0784
.05 1.0455 1.0822 1.1224
.06 1.0847 1.1218 1.162k4
.07 1.1213 1.1587 1.1994
.08 1.1560 1.1936 1.2343
.09 1.1891 1.2268 1.2675
.10 1.2210 1.2588 1.299%4

*
For %< 0.010, use the approximate formula

dg-bw - 2V(5 + u)fog(b/a)

27
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Figure 1.- Coordinate system and stress notation for the flat spinning
disk.
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Figure 5.- Lowest natural dilatational fregquency (m = 0).



33

100 m
||Jr,,
/]
- f
1
LI
) [ Clamped to rigid hub - lj ;:'
70 —— — — — Ko clamping - // I’ L
}
| | Jih
60 | /ﬂ" ;’!
ng“’ 50 ////II,;L
///ﬁ
T i
% / / //,,//
T
20— //i 1///
_.5ou_.25 /////{;é/
|
H ==
=
0 2 v 6 .8 1.0
b

Figure 6.- Second lowest natural dilatational frequency (m = 0).
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Figure 9.- Second lowest natural frequency for m = 1.
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